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Many-sorted logic

Many-sorted logic - Syntax

Non-logical vocabulary:

1.
2.

3.
4.
5.

non-empty set of sort symbols 01,05, ...

variables X1(01)7X2(01)7 ...xl(az) x2(02)

symbol

, indexed with a sort

5 g een

constant symbols ¢(?), indexed with a sort symbol
predicate symbols P; of arity o, x ... x 0,

function symbols f; of arity o, x ... x 0}, = 0},

Logical vocabulary:

1.
2.

connectives: —,V, ...
quantifiers ¥,x, 3,x for each sort symbol o

3. equality sign =
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Many-sorted logic

Semantics
Structure M:
1. A non-empty domain o™ for each sort symbol . The
domains of the sort symbols are pairwise disjoint
(oM OUJM =g for i #J)
2. For any constant symbol ¢ of sort o, cM € o™
3. For any predicate P of arity oj, x ... x gj,, PMc 0';-/1\/[ x...x oM
4. For function symbols analogous
M E Vox¢(x) iff M e ¢[a] for all ae o™
Note that there are no quantifiers that range over multiple domains

A
Uy

oy
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Many-sorted logic

Quine's conjecture

Quine’s conjecture

Every many-sorted theory is equivalent to a single-sorted
theory

What is the precise sense of 'equivalent’ here?

A standard notion of equivalence in the context of (single-sorted)
FOL is Definitional Equivalence
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Many-sorted logic

Definitional Equivalence

Explicit definitions
Let X be a signature and let P ¢ ¥, where P is some predicate
symbol. An explicit definition of P in terms of X is a sentence

Vx(Px < §(X))
where §(X) is a X-formula

Constant symbols and function symbols can also be explicitly
defined in a straightforward manner.
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Many-sorted logic

Definitional extensions

Let T be a theory in signature ¥, and let 1;, i € | be explicit
definitions in terms of ¥ of symbols not in X. Then T u{¢;|iel}
is a definitional extension of T.

Definitional equivalence

Two theories T; and T, of signature ¥1 and X, respectively, are
definitionally equivalent if they possess logically equivalent
definitional extensions T;" and T, of signature X; U ¥,
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Many-sorted logic

An example

Let 1 = {P} and X, = {Q} be signatures. Let T be a X-theory
and T, a ¥p-theory:

T1 = {VxPx}

To = {Vx-Qx}

Let § = Vx(Qx < =Px)

Let ¢’ = Vx(Px < -Qx)

T1u{d} and Tou {4’} are definitional extensions of Ty and Tp,
respectively. They are furthermore logically equivalent. T; and T,
are therefore definitionally equivalent
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Many-sorted logic

Generalising definitional equivalence - defining new sorts

So far, we have defined new constant symbols, predicate symbols,
and function symbols via definitional extensions. But in the setting
of many-sorted logic, we also encounter new sort symbols. How
should we define these?

New sorts are definable from old sorts via four constructions: We
can introduce product sorts, coproduct sorts, subsorts, and
quotient sorts
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Many-sorted logic

Product sort

A product sort can be thought of as the Cartesian product of two
sorts

Example: Let o' = {a, b} and 03" = {c}
Then o' = {{a,¢), (b, )}
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Many-sorted logic

Formally: The product sort o of sorts o1 and o3 is defined by
VorxVoy 33 2(m1(2) = x Am2(2) = )

Here, the 7; are new function symbols of arity ¢ — o;. Think of
them as projections.
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Many-sorted logic

Coproduct sort

A coproduct sort can be thought of as the disjoint union of two
sorts

Example: Let U{M ={a, b} and Uﬁw ={a, B}
Then O'é/l+ = {(‘97 1)7 <b7 1)7 (O‘a 2)7 (57 2>}
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Many-sorted logic

Formally: The coproduct sort o of sorts o1 and o5 is defined by

Voz(351x(p1(x) = 2)vI Ly (p2(y) = 2)) AV o, x Vo, (p1(x) # p2(y))

Here, the p; are new function symbols of arity o; - o. Think of
them as equipping each element of o; with an index /
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Many-sorted logic

Subsort

Think of a subsort of o as a copy of a definable subset of ¢

Example: Let o™ = {a, b,c} and let PM = {a, b}. We can then
define a subsort s of o that is a copy of PM, ie. od'={a,b'}
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Many-sorted logic

Formally: A subsort o of a sort o7 is defined by
v01X(¢(X) <« ng(h(z) = X)) A voyvaz(h(y) = h(Z) —-Yy= Z)

Here, ¢(x) is an old formula which defines the subset of o1 we
want to copy. h is a new function symbol of arity ¢ - o1. Think
of h as a bijection between ¢ and its copy.

Note that we cannot allow the domain of o to be empty. 3,,x¢$(x)
must therefore hold. This is called the admissibility condition for
the subsort o
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Many-sorted logic

Quotient sort

The elements of a quotient sort og of o are the equivalence
classes of elements of o with respect to some equivalence relation
o(x1,x2) on o

Example: Let o™ = { Mark, John, Rachel, Mary}

Let ¢(x1,x2) describe the equivalence relation 'x; is the same
gender as x;

[Mark]y = { Mark, John}
[Rachel]y = { Rachel, Mary}

a"g/ﬁ = {[Mark],, [ Rachel],}
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Many-sorted logic

Formally: A quotient sort o of a sort o1 is defined by

VU1XVU1Y(6(X) = 6(y) <« ¢(X7Y)) A V023U1X(6(X) = Z)

Here, € is a new function symbol of arity o1 — 0. € maps every
element of o7 to its equivalence class.

Once again, there is an admissibility condition: ¢(x,y) must be an
equivalence relation, i.e. reflexive, symmetric, transitive
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Many-sorted logic

Morita equivalence

We are now in a position to define our new notion of Generalised
Definitional Equivalence, or Morita Equivalence

Morita extensions

Let ¥ c X* be signatures and T a X-theory. A Morita extension
T* of T is a X*-theory

Tu{dsseX™ -1}

For which it holds that
1. §s is an explicit definition of s

2. If as is an admissibility condition for s, then T = as
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Many-sorted logic

Morita equivalence

Let 71 be a X1-theory and T, a X »-theory. T; and T, are Morita
equivalent if there are theories T{,...T{" and Tj,...T4 such that

IN

1. Ti*}is a Morita extension of T/ for 0<i<m-1

2. Ti*1is a Morita extension of T{ for 0<i<n-1

AN

3. T{" and T3 are logically equivalent

Why are multiple steps upwards needed (unlike for definitional
equivalence)?

Answer: We can construct new sorts from complex sorts, which in
turn are constructed from more basic sorts
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Many-sorted logic

Example

The following two theories are Morita equivalent:
Ty ={3;x(x=x)} and To = {35y (y =y)}, 35,yPy}

To show this, we need to define the symbols of ¥1 = {01} in terms
of the symbols of ¥5 = {02, P}, and vice versa. Then we can build
a common Morita extension T* of T; and T»

The domain of o1 in any model M of T; has exactly one element,
e.g. o ={a}. To construct a domain for o5 out of this, we need
to turn this one element into two.

= o must be defined as the coproduct of o1 with itself

O-é\/ﬁ = {<av 1>7 <372>}
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Many-sorted logic

We also need to define P € X5 in terms of X;1. For this, we can just
define PM" = {(a,1)}, i.e. the first element of the o3 we just
constructed

Now we need to define o1 in terms of Y. O'{Vﬁ needs to have
exactly one element. We just saw that PM" has exactly one
element. So let’s define o as a copy of PM”, i.e. as a subsort of

. +
0o. For instance, o' = {a}

Now let’s do all of this in the syntax!
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Many-sorted logic

The signature X* of our common Morita extension will be

Y* ={01,002,P,p1,p2}. p1 and py are function symbols of arity
o1 — o2 which we need for the definitions of the product sort and
the subsort. Let's define o5 and P:

bor Vo2 (3 x(p1(x) = 2) v T x(pa(x) = 2))
AN o XY,y (p1(x) # p2(y))
dp =V4,z(Pz < 35,x(z = p1(x)))

And let’s define o7:

0oy =V5,2(Pz <> 35, x(z = p1(x)))
AV o x¥ oy (p1(x) = p1(y) = x =)
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Many-sorted logic

T1U{d,,,0p} is a theory in the target signature
Y* ={01,02, P, p1,p2}. We have reached our common Morita
extension, starting from T;

But T, U {d,,} is in the signature ¥’ = {01, 02, P, p1}. We have
not yet reached the common Morita extension from T, since we
have not yet defined pp. We need to extend T U {d,, } once more
to reach the common Morita extension. Let's add

8ps = Vo1 XV o,y (p2(x) =y < p1(x) £ y)
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Many-sorted logic

One can verify that Ty U {d,,,0p} is logically equivalent to
ToU{00,,6,,}. We have therefore found our common Morita
extension of T7 and T>.

What do its models look like? Here is one, call it M™, based on
our earlier constructions:

) - (a(a1)
> 05 +:{(a’1>7(a’2>} .
» PMT 2 1(a,1)) >t =(a(a,2))

This brings us to two important notions: expansions and reducts
of structures
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Many-sorted logic

Expansions and reducts

Let X c ¥’ be signatures. Let M be a X'-structure. The unique

> -structure that agrees with M on the interpretation of every
symbol in X is called the reduct of M to . We write M|s for the
reduct.

If a X-structure M is the reduct of some ¥'-structure M™, then
M is called an expansion of M. Expansions are in general not
unique
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Many-sorted logic

Recall the model M™* of the common Morita extension of T; and
T, in the previous example. Its reducts to X1 = {01} and
Y, = {02, P}, respectively are

Mg,

> Mz, ot = {a)
> Mg, o) % = ((a,1),(a,2)}, P = {(a,1))

Note that M*|x, and M*|x, are models of T; and T,
respectively. In general, the following holds

Proposition. If T; and T, are Morita equivalent theories of
signature X1 and X5, respectively, and T some common Morita
extension, then every model M of T; can be expanded into a
model M™ of T¥, such that M*|z, is a model of T», and vice

Versa.
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Many-sorted logic

Returning to Quine's conjecture

Quine's conjecture (precise version)

Every many-sorted theory is Morita equivalent to a single-sorted
theory

It turns out that Quine's conjecture is false. | will now sketch the
proof of this claim. We need some (very basic) category theory
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Many-sorted logic

Category theory - basic notions

A category consists of
1. objects a, b, c, ...
2. arrows between objects f :a—> b,g:c— a,...
3. in particular, an identity arrow 1, : a - a for every object a

Arrows compose: If f:a— b and g: b — c are arrows, then there
exists an arrow gof:a—c¢
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Many-sorted logic

Equivalence of categories

A mapping F : A— B between categories A, B which maps objects
and arrows of A to objects and arrows of B, respectively, and has
the following properties

1. F(f:a—>b)=Ff:Fa— Fb
2. F(goh)=FgoFh
3. F(1,) = 15

is called a functor.

A functor is called an equivalence of categories if it is full, faithful,
and essentially surjective. If F: A— B is an equivalence of
categories, then there exists an equivalence of categories G: B - A
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Many-sorted logic

A functor F: A— B is full if for all arrows g : Fa; — Fay there
exists an arrow f : a; — ap such that g = Ff, for all a; and as from
A.

A functor F: A - B is faithful if Ff = Fg implies f = g for all
arrows f:a; >axand g:a;1 > axin A

[Note that a faithful functor may map f:a; - az and h:ax — a1
to the same arrow in B however]

A functor F : A — B is essentially surjective if for every object b
in B there is an object a in A such that Fa is isomorphic to b.

[Here, isomorphic means that there are arrows g : Fa - b and
gl:b— Fain Bsuchthat gogl=1,and glog=1£]
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Many-sorted logic

The category Mod(T)

Let T be a theory. The category Mod(T) has for its objects the
models of T. The arrows between the models are elementary
embeddings
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Many-sorted logic

Elementary embeddings

Let ¥ be a signature and let M and M’ be YX-structures

An elementary embedding h: M — M’ is a family of injective
maps hy : 0™ - o™’ for o € ¥, with the following property

» ME ¢la1,...an] iff M" = ¢[hy,(21),...hs,(an)]
for all X-formulae ¢(xi,...xp) and any elements
areoM, . apeoM

If every h, is surjective, h is called an isomorphism

An isomorphism h: M — M is called an automorphism
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Many-sorted logic

Categorical equivalence - a simple example

Let X1 = {P} and X, = {Q} be signatures, with P and Q unary
predicate symbols.
Let 71 and T, be a X1- and a X »-theory, respectively.
T1 = {3'x(x = x) A VxPx}
To = {3x(x = x) A Vx-Qx}
Every model M of T; looks like this:
1. M| ={a}, for some object a
2. PM=1{a}
The models of T, also have singleton domains, but QM =g
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Many-sorted logic

To show that T; and T are categorically equivalent, we have to
look at the categories Mod( T;)

The models of T; will be the objects in the category Mod(T1).

What about the arrows in Mod(T1), i.e. the elementary
embeddings between the models of 777

For any two models M and M’ of Ty, there exists a unique
function f : [M| - |M/|

f is evidently an isomorphism, and hence an elementary
embedding.

= We have identified all the arrows in Mod(T;)

All the same goes for Mod( T3)
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Many-sorted logic

We now want to show that there exists an equivalence of
categories between Mod(T1) and Mod(T,). We will show that

F : Mod(Ty) - Mod(T>)

M= M[Q]
fisf

is such an equivalence.

Here, M[Q] is the model of T2 with [M[Q]|=|M]. And f is the
unique arrow f : M[Q] — M'[Q], if f is the unique arrow
f:M->M
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Many-sorted logic

F is an equivalence of categories:

F is full: Let g be the unique arrow from M[Q] to M'[Q]. g = Ff
for f the unique arrow f : M — M/’

F is faithful: immediate from the uniqueness of f

F is essentially surjective: T» is categorical, therefore all of its
models are isomorphic
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Quine's conjecture is false

Proposition. Let ¥ = {07,07,...} be a signature with infinitely
many sort symbols. The X-theory T = @& is not Morita equivalent
to any single-sorted theory.

Intuitive justification: The theory T says that everything is either
01 or 0 or..., but that is not expressible in FOL without an infinite
disjunction
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Many-sorted logic

Proposition. Let ¥ = {01,07,...} be a signature with infinitely
many sort symbols. The X-theory T = @& is not Morita equivalent
to any single-sorted theory.

Sketch of proof: Barrett and Halvorson's proof is a proof by
contradiction. Assume that there is some single-sorted theory T’
in signature ¥’ that is Morita equivalent to T. Call their common
Morita extension T*. Remember that every model M of T can be
expanded into a model M™ of T* such that M*|g/ is a model of
T'. It can be shown that there exists an equivalence of categories
F:Mod(T) — Mod(T") that maps every model M of T to the
corresponding model M™*|g/ of T'.
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Many-sorted logic

Sketch of proof (cont.): Barrett and Halvorson now consider a
specific model M of T. It has two important properties: (1) a,-M
is finite for every sort symbol o; € ¥, and (2) M possesses
infinitely many automorphisms.

They now consider what the corresponding M™ |5 must look like.
M*|s is a ¥'-structure, and X’ only contains a single sort symbol,
call it . Since T and T’ are by assumption Morita equivalent,
oMl must in some way be constructed from the finite domains
of the sort symbols in ¥ via the product-, coproduct-, subsort-,
and quotient-operations. But this means that oMl s tself
finite, since these operations all produce finite sets when applied to
finite sets.
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Sketch of proof (cont.): Hence, M*|s: possesses at most finitely
many automorphisms. But then the functor F, which maps M to
M*|s/ cannot be a faithful functor, since it maps the infinitely
many automorphisms of M onto the finitely many automorphisms
of M*|xs. Contradiction.
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Many-sorted logic

A weakened version of Quine’s conjecture holds true:

Quine's conjecture (weakened)

If £ contains only finitely many sort symbols, then every ¥-theory
is Morita equivalent to some single-sorted theory

The proof is too long to go over the details. But | will sketch how,
given a finitely-sorted theory, one finds a Morita equivalent
single-sorted theory.
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Many-sorted logic

Say we are given a theory T in a signature ¥ with finitely many
sort symbols o1, ...0,. In the single-sorted theory T’ we want to
find, we will represent these by unary predicate symbols

Qoys - Qo

To mimic the semantics of the sort symbols, we add the following
axioms to T

> 3oxQy;x for every o in X
» Vox(Qpyx V...V Qp,X)
» Vox(Qox = (2 QX Ao A=Quy ;X A= Qyy XA e A=Qy, X))

One can then find a translation of the sentences of T into the
single-sorted language. For details see the paper.
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