Quine's Conjecture on Many-Sorted Logic Thomas Barrett and Hans Halvorson

Dominik Ehrenfels St Cross College

March 2, 2019

イロト 不得 トイヨト イヨト

3

1/41

Many-sorted logic - Syntax

Non-logical vocabulary:

- 1. non-empty set of sort symbols $\sigma_1, \sigma_2, ...$
- 2. variables $x_1^{(\sigma_1)}, x_2^{(\sigma_1)}, ... x_1^{(\sigma_2)}, x_2^{(\sigma_2)}, ...$, indexed with a sort symbol
- 3. constant symbols $c^{(\sigma)}$, indexed with a sort symbol
- 4. predicate symbols P_i of arity $\sigma_{i_1} \times ... \times \sigma_{i_n}$
- 5. function symbols f_j of arity $\sigma_{j_1} \times \ldots \times \sigma_{j_n} \rightarrow \sigma_{j_{n+1}}$

Logical vocabulary:

- 1. connectives: $\neg, \lor, ...$
- 2. quantifiers $\forall_{\sigma} x$, $\exists_{\sigma} x$ for each sort symbol σ
- 3. equality sign =

Semantics

Structure \mathcal{M} :

- A non-empty domain σ^M for each sort symbol σ. The domains of the sort symbols are pairwise disjoint (σ_i^M ∩ σ_j^M = Ø for i ≠ j)
- 2. For any constant symbol *c* of sort σ , $c^{\mathcal{M}} \in \sigma^{\mathcal{M}}$
- 3. For any predicate *P* of arity $\sigma_{i_1} \times \ldots \times \sigma_{i_n}$, $P^{\mathcal{M}} \subseteq \sigma_{i_1}^{\mathcal{M}} \times \ldots \times \sigma_{i_n}^{\mathcal{M}}$
- 4. For function symbols analogous

$$\mathcal{M} \vDash \forall_{\sigma} x \phi(x) \text{ iff } \mathcal{M} \vDash \phi[a] \text{ for all } a \in \sigma^{\mathcal{M}}$$

Note that there are no quantifiers that range over multiple domains

Quine's conjecture

Quine's conjecture

Every many-sorted theory is equivalent to a single-sorted theory

What is the precise sense of 'equivalent' here?

A standard notion of equivalence in the context of (single-sorted) FOL is *Definitional Equivalence*

Definitional Equivalence

Explicit definitions

Let Σ be a signature and let $P \notin \Sigma$, where P is some predicate symbol. An explicit definition of P in terms of Σ is a sentence

$$\forall \bar{x} (P\bar{x} \leftrightarrow \delta(\bar{x}))$$

where $\delta(\bar{x})$ is a Σ -formula

Constant symbols and function symbols can also be explicitly defined in a straightforward manner.

Definitional extensions

Let T be a theory in signature Σ , and let ψ_i , $i \in I$ be explicit definitions in terms of Σ of symbols not in Σ . Then $T \cup \{\psi_i | i \in I\}$ is a *definitional extension* of T.

Definitional equivalence

Two theories T_1 and T_2 of signature Σ_1 and Σ_2 , respectively, are *definitionally equivalent* if they possess logically equivalent definitional extensions T_1^+ and T_2^+ of signature $\Sigma_1 \cup \Sigma_2$

An example

Let $\Sigma_1 = \{P\}$ and $\Sigma_2 = \{Q\}$ be signatures. Let T_1 be a Σ_1 -theory and T_2 a Σ_2 -theory: $T_1 = \{\forall x P x\}$ $T_2 = \{\forall x \neg Q x\}$ Let $\delta \equiv \forall x (Qx \leftrightarrow \neg Px)$ Let $\delta' \equiv \forall x (Px \leftrightarrow \neg Qx)$ $T_1 = \{\forall x \neg Q x\}$

 $T_1 \cup \{\delta\}$ and $T_2 \cup \{\delta'\}$ are definitional extensions of T_1 and T_2 , respectively. They are furthermore logically equivalent. T_1 and T_2 are therefore definitionally equivalent

Generalising definitional equivalence - defining new sorts

So far, we have defined new constant symbols, predicate symbols, and function symbols via definitional extensions. But in the setting of many-sorted logic, we also encounter new sort symbols. How should we define these?

New sorts are definable from old sorts via four constructions: We can introduce product sorts, coproduct sorts, subsorts, and quotient sorts

Product sort

A product sort can be thought of as the Cartesian product of two sorts

Example: Let
$$\sigma_1^{\mathcal{M}} = \{a, b\}$$
 and $\sigma_2^{\mathcal{M}} = \{c\}$
Then $\sigma_P^{\mathcal{M}^+} = \{\langle a, c \rangle, \langle b, c \rangle\}$

Formally: The product sort σ of sorts σ_1 and σ_2 is defined by

$$\forall_{\sigma_1} x \forall_{\sigma_2} y \exists_{\sigma}^{=1} z(\pi_1(z) = x \land \pi_2(z) = y)$$

Here, the π_i are **new** function symbols of arity $\sigma \rightarrow \sigma_i$. Think of them as projections.

Coproduct sort

A coproduct sort can be thought of as the disjoint union of two sorts

Example: Let
$$\sigma_1^{\mathcal{M}} = \{a, b\}$$
 and $\sigma_2^{\mathcal{M}} = \{\alpha, \beta\}$
Then $\sigma_C^{\mathcal{M}^+} = \{\langle a, 1 \rangle, \langle b, 1 \rangle, \langle \alpha, 2 \rangle, \langle \beta, 2 \rangle\}$

Formally: The coproduct sort σ of sorts σ_1 and σ_2 is defined by $\forall_{\sigma} z (\exists_{\sigma_1}^{=1} x(\rho_1(x) = z) \lor \exists_{\sigma_2}^{=1} y(\rho_2(y) = z)) \land \forall_{\sigma_1} x \forall_{\sigma_2} y(\rho_1(x) \neq \rho_2(y))$

Here, the ρ_i are **new** function symbols of arity $\sigma_i \rightarrow \sigma$. Think of them as equipping each element of σ_i with an index *i*

Subsort

Think of a subsort of σ as a copy of a definable subset of $\sigma^{\mathcal{M}}$

Example: Let $\sigma^{\mathcal{M}} = \{a, b, c\}$ and let $P^{\mathcal{M}} = \{a, b\}$. We can then define a subsort σ_{S} of σ that is a copy of $P^{\mathcal{M}}$, i.e. $\sigma_{S}^{\mathcal{M}} = \{a', b'\}$

Formally: A subsort σ of a sort σ_1 is defined by

$$\forall_{\sigma_1} x(\phi(x) \leftrightarrow \exists_{\sigma} z(h(z) = x)) \land \forall_{\sigma} y \forall_{\sigma} z(h(y) = h(z) \rightarrow y = z)$$

Here, $\phi(x)$ is an **old** formula which defines the subset of σ_1 we want to copy. *h* is a **new** function symbol of arity $\sigma \rightarrow \sigma_1$. Think of *h* as a bijection between σ and its copy.

Note that we cannot allow the domain of σ to be empty. $\exists_{\sigma_1} x \phi(x)$ must therefore hold. This is called the admissibility condition for the subsort σ

Quotient sort

The elements of a quotient sort σ_Q of σ are the equivalence classes of elements of σ with respect to some equivalence relation $\phi(x_1, x_2)$ on σ

Example: Let $\sigma^{\mathcal{M}} = \{Mark, John, Rachel, Mary\}$ Let $\phi(x_1, x_2)$ describe the equivalence relation ' x_1 is the same gender as x'_2

$$\begin{split} & [Mark]_{\phi} = \{Mark, John\} \\ & [Rachel]_{\phi} = \{Rachel, Mary\} \\ & \sigma_{Q}^{\mathcal{M}^{+}} = \{[Mark]_{\phi}, [Rachel]_{\phi}\} \end{split}$$

Formally: A quotient sort σ of a sort σ_1 is defined by

$$\forall_{\sigma_1} x \forall_{\sigma_1} y (\epsilon(x) = \epsilon(y) \leftrightarrow \phi(x, y)) \land \forall_{\sigma} z \exists_{\sigma_1} x (\epsilon(x) = z)$$

Here, ϵ is a **new** function symbol of arity $\sigma_1 \rightarrow \sigma$. ϵ maps every element of σ_1 to its equivalence class.

Once again, there is an admissibility condition: $\phi(x, y)$ must be an equivalence relation, i.e. reflexive, symmetric, transitive

Morita equivalence

We are now in a position to define our new notion of Generalised Definitional Equivalence, or *Morita* Equivalence

Morita extensions Let $\Sigma \subset \Sigma^+$ be signatures and T a Σ -theory. A Morita extension T^+ of T is a Σ^+ -theory

$$T \cup \{\delta_{s} | s \in \Sigma^{+} - \Sigma\}$$

For which it holds that

- 1. δ_s is an explicit definition of s
- 2. If α_s is an admissibility condition for s, then $T \vDash \alpha_s$

Morita equivalence

Let T_1 be a Σ_1 -theory and T_2 a Σ_2 -theory. T_1 and T_2 are Morita equivalent if there are theories $T_1^1, \dots T_1^m$ and $T_2^1, \dots T_2^n$ such that

- 1. T_1^{i+1} is a Morita extension of T_i^i for $0 \le i \le m-1$
- 2. T_2^{i+1} is a Morita extension of T_1^i for $0 \le i \le n-1$
- 3. T_1^m and T_2^n are logically equivalent

Why are multiple steps upwards needed (unlike for definitional equivalence)?

Answer: We can construct new sorts from complex sorts, which in turn are constructed from more basic sorts

Example

The following two theories are Morita equivalent:

$$T_1 = \{ \exists_{\sigma_1}^{=1} x(x = x) \} \text{ and } T_2 = \{ \exists_{\sigma_2}^{=2} y(y = y) \}, \exists_{\sigma_2}^{=1} y P y \}$$

To show this, we need to define the symbols of $\Sigma_1 = \{\sigma_1\}$ in terms of the symbols of $\Sigma_2 = \{\sigma_2, P\}$, and vice versa. Then we can build a common Morita extension T^+ of T_1 and T_2

The domain of σ_1 in any model \mathcal{M} of \mathcal{T}_1 has exactly one element, e.g. $\sigma_1^{\mathcal{M}} = \{a\}$. To construct a domain for σ_2 out of this, we need to turn this one element into two.

 $\Rightarrow \sigma_2$ must be defined as the coproduct of σ_1 with itself

$$\sigma_2^{\mathcal{M}^+} = \{ \langle a, 1 \rangle, \langle a, 2 \rangle \}$$

We also need to define $P \in \Sigma_2$ in terms of Σ_1 . For this, we can just define $P^{\mathcal{M}^+} = \{\langle a, 1 \rangle\}$, i.e. the first element of the $\sigma_2^{\mathcal{M}^+}$ we just constructed

Now we need to define σ_1 in terms of Σ_2 . $\sigma_1^{\mathcal{M}^+}$ needs to have exactly one element. We just saw that $P^{\mathcal{M}^+}$ has exactly one element. So let's define σ_1 as a copy of $P^{\mathcal{M}^+}$, i.e. as a subsort of σ_2 . For instance, $\sigma_1^{\mathcal{M}^+} = \{a\}$

Now let's do all of this in the syntax!

The signature Σ^+ of our common Morita extension will be $\Sigma^+ = \{\sigma_1, \sigma_2, P, \rho_1, \rho_2\}$. ρ_1 and ρ_2 are function symbols of arity $\sigma_1 \rightarrow \sigma_2$ which we need for the definitions of the product sort and the subsort. Let's define σ_2 and P:

$$\delta_{\sigma_{2}} \equiv \forall_{\sigma_{2}} z (\exists_{\sigma_{1}}^{=1} x(\rho_{1}(x) = z) \lor \exists_{\sigma_{1}}^{=1} x(\rho_{2}(x) = z))$$

$$\land \forall_{\sigma_{1}} x \forall_{\sigma_{1}} y(\rho_{1}(x) \neq \rho_{2}(y))$$

$$\delta_{P} \equiv \forall_{\sigma_{2}} z (Pz \leftrightarrow \exists_{\sigma_{1}} x(z = \rho_{1}(x)))$$

And let's define σ_1 :

$$\delta_{\sigma_1} \equiv \forall_{\sigma_2} z (Pz \leftrightarrow \exists_{\sigma_1} x (z = \rho_1(x))) \land \forall_{\sigma_1} x \forall_{\sigma_1} y (\rho_1(x) = \rho_1(y) \rightarrow x = y)$$

 $T_1 \cup \{\delta_{\sigma_2}, \delta_P\}$ is a theory in the target signature $\Sigma^+ = \{\sigma_1, \sigma_2, P, \rho_1, \rho_2\}$. We have reached our common Morita extension, starting from T_1

But $T_2 \cup \{\delta_{\sigma_1}\}$ is in the signature $\Sigma' = \{\sigma_1, \sigma_2, P, \rho_1\}$. We have not yet reached the common Morita extension from T_2 since we have not yet defined ρ_2 . We need to extend $T_2 \cup \{\delta_{\sigma_1}\}$ once more to reach the common Morita extension. Let's add

$$\delta_{\rho_2} \equiv \forall_{\sigma_1} x \forall_{\sigma_2} y (\rho_2(x) = y \leftrightarrow \rho_1(x) \neq y)$$

One can verify that $T_1 \cup \{\delta_{\sigma_2}, \delta_P\}$ is logically equivalent to $T_2 \cup \{\delta_{\sigma_1}, \delta_{\rho_2}\}$. We have therefore found our common Morita extension of T_1 and T_2 .

What do its models look like? Here is one, call it \mathcal{M}^+ , based on our earlier constructions:

$$\begin{aligned} & \sigma_1^{\mathcal{M}^+} = \{a\} \\ & \sigma_2^{\mathcal{M}^+} = \{\langle a, 1 \rangle, \langle a, 2 \rangle\} \\ & \mathcal{P}^{\mathcal{M}^+} = \{\langle a, 1 \rangle\} \end{aligned}$$

$$\begin{aligned} & \rho_1^{\mathcal{M}^+} = \langle a, \langle a, 1 \rangle\rangle \\ & \rho_2^{\mathcal{M}^+} = \langle a, \langle a, 2 \rangle\rangle \end{aligned}$$

This brings us to two important notions: *expansions* and *reducts* of structures

Expansions and reducts

Let $\Sigma \subset \Sigma'$ be signatures. Let \mathcal{M} be a Σ' -structure. The unique Σ -structure that agrees with \mathcal{M} on the interpretation of every symbol in Σ is called the *reduct* of \mathcal{M} to Σ . We write $\mathcal{M}|_{\Sigma}$ for the reduct.

If a Σ -structure \mathcal{M} is the reduct of some Σ' -structure \mathcal{M}^+ , then \mathcal{M}^+ is called an *expansion* of \mathcal{M} . Expansions are in general not unique

Recall the model \mathcal{M}^+ of the common Morita extension of \mathcal{T}_1 and \mathcal{T}_2 in the previous example. Its reducts to $\Sigma_1 = \{\sigma_1\}$ and $\Sigma_2 = \{\sigma_2, P\}$, respectively are

 $\begin{array}{l} \bullet \quad \mathcal{M}^+|_{\Sigma_1}: \ \sigma_1^{\mathcal{M}^+|_{\Sigma_1}} = \{a\} \\ \bullet \quad \mathcal{M}^+|_{\Sigma_2}: \ \sigma_2^{\mathcal{M}^+|_{\Sigma_2}} = \{\langle a, 1 \rangle, \langle a, 2 \rangle\}, \ \mathcal{P}^{\mathcal{M}^+|_{\Sigma_2}} = \{\langle a, 1 \rangle\} \end{array}$

Note that $\mathcal{M}^+|_{\Sigma_1}$ and $\mathcal{M}^+|_{\Sigma_2}$ are models of T_1 and T_2 , respectively. In general, the following holds

Proposition. If T_1 and T_2 are Morita equivalent theories of signature Σ_1 and Σ_2 , respectively, and T^+ some common Morita extension, then every model \mathcal{M} of T_1 can be expanded into a model \mathcal{M}^+ of T^+ , such that $\mathcal{M}^+|_{\Sigma_2}$ is a model of T_2 , and vice versa.

Returning to Quine's conjecture

Quine's conjecture (precise version)

Every many-sorted theory is Morita equivalent to a single-sorted theory

It turns out that Quine's conjecture is false. I will now sketch the proof of this claim. We need some (very basic) category theory

Category theory - basic notions

A category consists of

- 1. objects *a*, *b*, *c*, ...
- 2. arrows between objects $f : a \rightarrow b, g : c \rightarrow a, ...$

3. in particular, an identity arrow $1_a : a \to a$ for every object aArrows compose: If $f : a \to b$ and $g : b \to c$ are arrows, then there exists an arrow $g \circ f : a \to c$

Equivalence of categories

A mapping $F : A \rightarrow B$ between categories A, B which maps objects and arrows of A to objects and arrows of B, respectively, and has the following properties

1.
$$F(f: a \rightarrow b) = Ff: Fa \rightarrow Fb$$

2.
$$F(g \circ h) = Fg \circ Fh$$

3.
$$F(1_a) = 1_{Fa}$$

is called a functor.

A functor is called an equivalence of categories if it is full, faithful, and essentially surjective. If $F : A \rightarrow B$ is an equivalence of categories, then there exists an equivalence of categories $G : B \rightarrow A$

A functor $F : A \to B$ is **full** if for all arrows $g : Fa_1 \to Fa_2$ there exists an arrow $f : a_1 \to a_2$ such that g = Ff, for all a_1 and a_2 from A.

A functor $F : A \rightarrow B$ is **faithful** if Ff = Fg implies f = g for all arrows $f : a_1 \rightarrow a_2$ and $g : a_1 \rightarrow a_2$ in A

[Note that a faithful functor may map $f : a_1 \rightarrow a_2$ and $h : a_2 \rightarrow a_1$ to the same arrow in *B* however]

A functor $F : A \rightarrow B$ is **essentially surjective** if for every object *b* in *B* there is an object *a* in *A* such that *Fa* is isomorphic to *b*.

[Here, isomorphic means that there are arrows $g : Fa \rightarrow b$ and $g^{-1} : b \rightarrow Fa$ in B such that $g \circ g^{-1} = 1_b$ and $g^{-1} \circ g = 1_{Fa}$]

The category Mod(T)

Let T be a theory. The category Mod(T) has for its objects the models of T. The arrows between the models are elementary embeddings

Elementary embeddings

Let Σ be a signature and let \mathcal{M} and \mathcal{M}' be Σ -structures

An elementary embedding $h: \mathcal{M} \to \mathcal{M}'$ is a family of injective maps $h_{\sigma}: \sigma^{\mathcal{M}} \to \sigma^{\mathcal{M}'}$, for $\sigma \in \Sigma$, with the following property

•
$$\mathcal{M} \models \phi[a_1, ..., a_n]$$
 iff $\mathcal{M}' \models \phi[h_{\sigma_1}(a_1), ..., h_{\sigma_n}(a_n)]$
for all Σ -formulae $\phi(x_1, ..., x_n)$ and any elements
 $a_1 \in \sigma_1^{\mathcal{M}}, ..., a_n \in \sigma_n^{\mathcal{M}}$

If every h_{σ} is surjective, h is called an *isomorphism* An isomorphism $h: \mathcal{M} \to \mathcal{M}$ is called an *automorphism*

Categorical equivalence - a simple example

Let $\Sigma_1 = \{P\}$ and $\Sigma_2 = \{Q\}$ be signatures, with P and Q unary predicate symbols.

Let T_1 and T_2 be a Σ_1 - and a Σ_2 -theory, respectively.

$$T_1 = \{ \exists ! x (x = x) \land \forall x P x \}$$
$$T_2 = \{ \exists ! x (x = x) \land \forall x \neg Q x \}$$

Every model \mathcal{M} of \mathcal{T}_1 looks like this:

|*M*| = {*a*}, for some object *a P^M* = {*a*}

The models of T_2 also have singleton domains, but $Q^{\mathcal{M}} = \emptyset$

To show that T_1 and T_2 are categorically equivalent, we have to look at the categories $Mod(T_i)$

The models of T_1 will be the objects in the category $Mod(T_1)$.

What about the arrows in $Mod(T_1)$, i.e. the elementary embeddings between the models of T_1 ?

For any two models \mathcal{M} and \mathcal{M}' of T_1 , there exists a unique function $f : |\mathcal{M}| \to |\mathcal{M}'|$

f is evidently an isomorphism, and hence an elementary embedding.

 \Rightarrow We have identified all the arrows in $Mod(T_1)$

All the same goes for $Mod(T_2)$

We now want to show that there exists an equivalence of categories between $Mod(T_1)$ and $Mod(T_2)$. We will show that

$$F: Mod(T_1) \to Mod(T_2)$$
$$\mathcal{M} \mapsto \mathcal{M}[Q]$$
$$f \mapsto \tilde{f}$$

is such an equivalence.

Here, $\mathcal{M}[Q]$ is the model of T_2 with $|\mathcal{M}[Q]| = |\mathcal{M}|$. And \tilde{f} is the unique arrow $\tilde{f} : \mathcal{M}[Q] \to \mathcal{M}'[Q]$, if f is the unique arrow $f : \mathcal{M} \to \mathcal{M}'$

F is an equivalence of categories:

F is full: Let g be the unique arrow from $\mathcal{M}[Q]$ to $\mathcal{M}'[Q]$. g = Ff for f the unique arrow $f : \mathcal{M} \to \mathcal{M}'$

F is faithful: immediate from the uniqueness of f

F is essentially surjective: T_2 is categorical, therefore **all** of its models are isomorphic

Quine's conjecture is false

Proposition. Let $\Sigma = \{\sigma_1, \sigma_2, ...\}$ be a signature with infinitely many sort symbols. The Σ -theory $T = \emptyset$ is not Morita equivalent to any single-sorted theory.

Intuitive justification: The theory T says that everything is either σ_1 or σ_2 or..., but that is not expressible in FOL without an infinite disjunction

Proposition. Let $\Sigma = \{\sigma_1, \sigma_2, ...\}$ be a signature with infinitely many sort symbols. The Σ -theory $T = \emptyset$ is not Morita equivalent to any single-sorted theory.

Sketch of proof: Barrett and Halvorson's proof is a proof by contradiction. Assume that there is some single-sorted theory T' in signature Σ' that is Morita equivalent to T. Call their common Morita extension T^+ . Remember that every model \mathcal{M} of T can be expanded into a model \mathcal{M}^+ of T^+ such that $\mathcal{M}^+|_{\Sigma'}$ is a model of T'. It can be shown that there exists an equivalence of categories $F: Mod(T) \rightarrow Mod(T')$ that maps every model \mathcal{M} of T to the corresponding model $\mathcal{M}^+|_{\Sigma'}$ of T'.

Sketch of proof (cont.): Barrett and Halvorson now consider a specific model \mathcal{M} of \mathcal{T} . It has two important properties: (1) $\sigma_i^{\mathcal{M}}$ is finite for every sort symbol $\sigma_i \in \Sigma$, and (2) \mathcal{M} possesses infinitely many automorphisms.

They now consider what the corresponding $\mathcal{M}^+|_{\Sigma'}$ must look like. $\mathcal{M}^+|_{\Sigma'}$ is a Σ' -structure, and Σ' only contains a single sort symbol, call it α . Since T and T' are by assumption Morita equivalent, $\alpha^{\mathcal{M}^+|_{\Sigma'}}$ must in some way be constructed from the finite domains of the sort symbols in Σ via the product-, coproduct-, subsort-, and quotient-operations. But this means that $\alpha^{\mathcal{M}^+|_{\Sigma'}}$ is itself finite, since these operations all produce finite sets when applied to finite sets. Sketch of proof (cont.): Hence, $\mathcal{M}^+|_{\Sigma'}$ possesses at most finitely many automorphisms. But then the functor F, which maps \mathcal{M} to $\mathcal{M}^+|_{\Sigma'}$ cannot be a faithful functor, since it maps the infinitely many automorphisms of \mathcal{M} onto the finitely many automorphisms of $\mathcal{M}^+|_{\Sigma'}$. Contradiction.

A weakened version of Quine's conjecture holds true:

Quine's conjecture (weakened)

If Σ contains only finitely many sort symbols, then every $\Sigma\text{-theory}$ is Morita equivalent to some single-sorted theory

The proof is too long to go over the details. But I will sketch how, given a finitely-sorted theory, one finds a Morita equivalent single-sorted theory.

Say we are given a theory T in a signature Σ with finitely many sort symbols $\sigma_1, ... \sigma_n$. In the single-sorted theory T' we want to find, we will represent these by unary predicate symbols $Q_{\sigma_1}, ... Q_{\sigma_n}$.

To mimic the semantics of the sort symbols, we add the following axioms to T':

• $\exists_{\sigma} x Q_{\sigma_i} x$ for every σ_i in Σ

$$\forall_{\sigma} x (Q_{\sigma_1} x \lor ... \lor Q_{\sigma_n} x)$$

 $\forall_{\sigma} x (Q_{\sigma_{i}} x \to (\neg Q_{\sigma_{1}} x \land \dots \land \neg Q_{\sigma_{i-1}} x \land \neg Q_{\sigma_{i+1}} x \land \dots \land \neg Q_{\sigma_{n}} x))$

One can then find a translation of the sentences of T into the single-sorted language. For details see the paper.