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Many-sorted logic

Many-sorted logic - Syntax

Non-logical vocabulary:

1. non-empty set of sort symbols σ1, σ2, ...

2. variables x
(σ1)

1 , x
(σ1)

2 , ...x
(σ2)

1 , x
(σ2)

2 , ..., indexed with a sort
symbol

3. constant symbols c(σ), indexed with a sort symbol

4. predicate symbols Pi of arity σi1 × ... × σin
5. function symbols fj of arity σj1 × ... × σjn → σjn+1

Logical vocabulary:

1. connectives: ¬,∨, ...
2. quantifiers ∀σx , ∃σx for each sort symbol σ

3. equality sign =
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Many-sorted logic

Semantics
Structure M:

1. A non-empty domain σM for each sort symbol σ. The
domains of the sort symbols are pairwise disjoint
(σMi ∩ σMj = ∅ for i ≠ j)

2. For any constant symbol c of sort σ, cM ∈ σM
3. For any predicate P of arity σi1 × ...× σin , PM ⊆ σMi1 × ...×σMin
4. For function symbols analogous

M ⊧ ∀σxφ(x) iff M ⊧ φ[a] for all a ∈ σM
Note that there are no quantifiers that range over multiple domains
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Many-sorted logic

Quine’s conjecture

Quine’s conjecture

Every many-sorted theory is equivalent to a single-sorted
theory

What is the precise sense of ’equivalent’ here?

A standard notion of equivalence in the context of (single-sorted)
FOL is Definitional Equivalence
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Many-sorted logic

Definitional Equivalence

Explicit definitions

Let Σ be a signature and let P /∈ Σ, where P is some predicate
symbol. An explicit definition of P in terms of Σ is a sentence

∀x̄(Px̄ ↔ δ(x̄))

where δ(x̄) is a Σ-formula

Constant symbols and function symbols can also be explicitly
defined in a straightforward manner.
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Many-sorted logic

Definitional extensions
Let T be a theory in signature Σ, and let ψi , i ∈ I be explicit
definitions in terms of Σ of symbols not in Σ. Then T ∪ {ψi ∣i ∈ I}
is a definitional extension of T .

Definitional equivalence

Two theories T1 and T2 of signature Σ1 and Σ2, respectively, are
definitionally equivalent if they possess logically equivalent
definitional extensions T+

1 and T+

2 of signature Σ1 ∪Σ2
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Many-sorted logic

An example

Let Σ1 = {P} and Σ2 = {Q} be signatures. Let T1 be a Σ1-theory
and T2 a Σ2-theory:

T1 = {∀xPx}
T2 = {∀x¬Qx}
Let δ ≡ ∀x(Qx ↔ ¬Px)
Let δ′ ≡ ∀x(Px ↔ ¬Qx)
T1 ∪ {δ} and T2 ∪ {δ′} are definitional extensions of T1 and T2,
respectively. They are furthermore logically equivalent. T1 and T2

are therefore definitionally equivalent
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Many-sorted logic

Generalising definitional equivalence - defining new sorts

So far, we have defined new constant symbols, predicate symbols,
and function symbols via definitional extensions. But in the setting
of many-sorted logic, we also encounter new sort symbols. How
should we define these?

New sorts are definable from old sorts via four constructions: We
can introduce product sorts, coproduct sorts, subsorts, and
quotient sorts
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Many-sorted logic

Product sort

A product sort can be thought of as the Cartesian product of two
sorts

Example: Let σM1 = {a,b} and σM2 = {c}
Then σM

+

P = {⟨a, c⟩, ⟨b, c⟩}
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Many-sorted logic

Formally: The product sort σ of sorts σ1 and σ2 is defined by

∀σ1x∀σ2y∃=1
σ z(π1(z) = x ∧ π2(z) = y)

Here, the πi are new function symbols of arity σ → σi . Think of
them as projections.
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Many-sorted logic

Coproduct sort

A coproduct sort can be thought of as the disjoint union of two
sorts

Example: Let σM1 = {a,b} and σM2 = {α,β}
Then σM

+

C = {⟨a,1⟩, ⟨b,1⟩, ⟨α,2⟩, ⟨β,2⟩}
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Many-sorted logic

Formally: The coproduct sort σ of sorts σ1 and σ2 is defined by

∀σz(∃=1
σ1
x(ρ1(x) = z)∨∃=1

σ2
y(ρ2(y) = z))∧∀σ1x∀σ2y(ρ1(x) ≠ ρ2(y))

Here, the ρi are new function symbols of arity σi → σ. Think of
them as equipping each element of σi with an index i
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Many-sorted logic

Subsort

Think of a subsort of σ as a copy of a definable subset of σM

Example: Let σM = {a,b, c} and let PM = {a,b}. We can then
define a subsort σS of σ that is a copy of PM, i.e. σMS = {a′,b′}
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Many-sorted logic

Formally: A subsort σ of a sort σ1 is defined by

∀σ1x(φ(x)↔ ∃σz(h(z) = x)) ∧ ∀σy∀σz(h(y) = h(z)→ y = z)

Here, φ(x) is an old formula which defines the subset of σ1 we
want to copy. h is a new function symbol of arity σ → σ1. Think
of h as a bijection between σ and its copy.

Note that we cannot allow the domain of σ to be empty. ∃σ1xφ(x)
must therefore hold. This is called the admissibility condition for
the subsort σ
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Many-sorted logic

Quotient sort

The elements of a quotient sort σQ of σ are the equivalence
classes of elements of σ with respect to some equivalence relation
φ(x1, x2) on σ

Example: Let σM = {Mark , John,Rachel ,Mary}
Let φ(x1, x2) describe the equivalence relation ′x1 is the same
gender as x ′2

[Mark]φ = {Mark , John}
[Rachel]φ = {Rachel ,Mary}
σM

+

Q = {[Mark]φ, [Rachel]φ}
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Many-sorted logic

Formally: A quotient sort σ of a sort σ1 is defined by

∀σ1x∀σ1y(ε(x) = ε(y)↔ φ(x , y)) ∧ ∀σz∃σ1x(ε(x) = z)

Here, ε is a new function symbol of arity σ1 → σ. ε maps every
element of σ1 to its equivalence class.

Once again, there is an admissibility condition: φ(x , y) must be an
equivalence relation, i.e. reflexive, symmetric, transitive
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Many-sorted logic

Morita equivalence

We are now in a position to define our new notion of Generalised
Definitional Equivalence, or Morita Equivalence

Morita extensions
Let Σ ⊂ Σ+ be signatures and T a Σ-theory. A Morita extension
T+ of T is a Σ+-theory

T ∪ {δs ∣s ∈ Σ+ −Σ}

For which it holds that

1. δs is an explicit definition of s

2. If αs is an admissibility condition for s, then T ⊧ αs
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Many-sorted logic

Morita equivalence

Let T1 be a Σ1-theory and T2 a Σ2-theory. T1 and T2 are Morita
equivalent if there are theories T 1

1 , ...T
m
1 and T 1

2 , ...T
n
2 such that

1. T i+1
1 is a Morita extension of T i

i for 0 ≤ i ≤ m − 1

2. T i+1
2 is a Morita extension of T i

1 for 0 ≤ i ≤ n − 1

3. Tm
1 and T n

2 are logically equivalent

Why are multiple steps upwards needed (unlike for definitional
equivalence)?
Answer: We can construct new sorts from complex sorts, which in
turn are constructed from more basic sorts
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Many-sorted logic

Example

The following two theories are Morita equivalent:

T1 = {∃=1
σ1
x(x = x)} and T2 = {∃=2

σ2
y(y = y)},∃=1

σ2
yPy}

To show this, we need to define the symbols of Σ1 = {σ1} in terms
of the symbols of Σ2 = {σ2,P}, and vice versa. Then we can build
a common Morita extension T+ of T1 and T2

The domain of σ1 in any model M of T1 has exactly one element,
e.g. σM1 = {a}. To construct a domain for σ2 out of this, we need
to turn this one element into two.

⇒ σ2 must be defined as the coproduct of σ1 with itself

σM
+

2 = {⟨a,1⟩, ⟨a,2⟩}
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Many-sorted logic

We also need to define P ∈ Σ2 in terms of Σ1. For this, we can just
define PM

+ = {⟨a,1⟩}, i.e. the first element of the σM
+

2 we just
constructed

Now we need to define σ1 in terms of Σ2. σM
+

1 needs to have
exactly one element. We just saw that PM

+

has exactly one
element. So let’s define σ1 as a copy of PM

+

, i.e. as a subsort of
σ2. For instance, σM

+

1 = {a}
Now let’s do all of this in the syntax!
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Many-sorted logic

The signature Σ+ of our common Morita extension will be
Σ+ = {σ1, σ2,P, ρ1, ρ2}. ρ1 and ρ2 are function symbols of arity
σ1 → σ2 which we need for the definitions of the product sort and
the subsort. Let’s define σ2 and P:

δσ2 ≡∀σ2z(∃=1
σ1
x(ρ1(x) = z) ∨ ∃=1

σ1
x(ρ2(x) = z))

∧ ∀σ1x∀σ1y(ρ1(x) ≠ ρ2(y))
δP ≡∀σ2z(Pz ↔ ∃σ1x(z = ρ1(x)))

And let’s define σ1:

δσ1 ≡∀σ2z(Pz ↔ ∃σ1x(z = ρ1(x)))
∧ ∀σ1x∀σ1y(ρ1(x) = ρ1(y)→ x = y)
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Many-sorted logic

T1 ∪ {δσ2 , δP} is a theory in the target signature
Σ+ = {σ1, σ2,P, ρ1, ρ2}. We have reached our common Morita
extension, starting from T1

But T2 ∪ {δσ1} is in the signature Σ′ = {σ1, σ2,P, ρ1}. We have
not yet reached the common Morita extension from T2 since we
have not yet defined ρ2. We need to extend T2 ∪ {δσ1} once more
to reach the common Morita extension. Let’s add

δρ2 ≡ ∀σ1x∀σ2y(ρ2(x) = y ↔ ρ1(x) ≠ y)
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Many-sorted logic

One can verify that T1 ∪ {δσ2 , δP} is logically equivalent to
T2 ∪ {δσ1 , δρ2}. We have therefore found our common Morita
extension of T1 and T2.

What do its models look like? Here is one, call it M+, based on
our earlier constructions:

▸ σM
+

1 = {a}
▸ σM

+

2 = {⟨a,1⟩, ⟨a,2⟩}
▸ PM

+ = {⟨a,1⟩}

▸ ρM
+

1 = ⟨a, ⟨a,1⟩⟩

▸ ρM
+

2 = ⟨a, ⟨a,2⟩⟩

This brings us to two important notions: expansions and reducts
of structures
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Many-sorted logic

Expansions and reducts

Let Σ ⊂ Σ′ be signatures. Let M be a Σ′-structure. The unique
Σ-structure that agrees with M on the interpretation of every
symbol in Σ is called the reduct of M to Σ. We write M∣Σ for the
reduct.

If a Σ-structure M is the reduct of some Σ′-structure M+, then
M+ is called an expansion of M. Expansions are in general not
unique
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Many-sorted logic

Recall the model M+ of the common Morita extension of T1 and
T2 in the previous example. Its reducts to Σ1 = {σ1} and
Σ2 = {σ2,P}, respectively are

▸ M+∣Σ1 : σ
M

+
∣Σ1

1 = {a}
▸ M+∣Σ2 : σ

M
+
∣Σ2

2 = {⟨a,1⟩, ⟨a,2⟩}, PM
+
∣Σ2 = {⟨a,1⟩}

Note that M+∣Σ1 and M+∣Σ2 are models of T1 and T2,
respectively. In general, the following holds

Proposition. If T1 and T2 are Morita equivalent theories of
signature Σ1 and Σ2, respectively, and T+ some common Morita
extension, then every model M of T1 can be expanded into a
model M+ of T+, such that M+∣Σ2 is a model of T2, and vice
versa.
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Many-sorted logic

Returning to Quine’s conjecture

Quine’s conjecture (precise version)

Every many-sorted theory is Morita equivalent to a single-sorted
theory

It turns out that Quine’s conjecture is false. I will now sketch the
proof of this claim. We need some (very basic) category theory
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Many-sorted logic

Category theory - basic notions

A category consists of

1. objects a,b, c, ...

2. arrows between objects f ∶ a → b,g ∶ c → a, ...

3. in particular, an identity arrow 1a ∶ a → a for every object a

Arrows compose: If f ∶ a → b and g ∶ b → c are arrows, then there
exists an arrow g ○ f ∶ a → c
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Many-sorted logic

Equivalence of categories

A mapping F ∶ A→ B between categories A, B which maps objects
and arrows of A to objects and arrows of B, respectively, and has
the following properties

1. F (f ∶ a → b) = Ff ∶ Fa → Fb

2. F (g ○ h) = Fg ○ Fh
3. F (1a) = 1Fa

is called a functor.

A functor is called an equivalence of categories if it is full, faithful,
and essentially surjective. If F ∶ A→ B is an equivalence of
categories, then there exists an equivalence of categories G ∶ B → A
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Many-sorted logic

A functor F ∶ A→ B is full if for all arrows g ∶ Fa1 → Fa2 there
exists an arrow f ∶ a1 → a2 such that g = Ff , for all a1 and a2 from
A.

A functor F ∶ A→ B is faithful if Ff = Fg implies f = g for all
arrows f ∶ a1 → a2 and g ∶ a1 → a2 in A

[Note that a faithful functor may map f ∶ a1 → a2 and h ∶ a2 → a1

to the same arrow in B however]

A functor F ∶ A→ B is essentially surjective if for every object b
in B there is an object a in A such that Fa is isomorphic to b.

[Here, isomorphic means that there are arrows g ∶ Fa → b and
g−1 ∶ b → Fa in B such that g ○ g−1 = 1b and g−1 ○ g = 1Fa]
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Many-sorted logic

The category Mod(T )

Let T be a theory. The category Mod(T ) has for its objects the
models of T . The arrows between the models are elementary
embeddings

30 / 41



Many-sorted logic

Elementary embeddings

Let Σ be a signature and let M and M′ be Σ-structures

An elementary embedding h ∶M→M′ is a family of injective
maps hσ ∶ σM → σM

′

, for σ ∈ Σ, with the following property

▸ M ⊧ φ[a1, ...an] iff M′ ⊧ φ[hσ1(a1), ...hσn(an)]
for all Σ-formulae φ(x1, ...xn) and any elements
a1 ∈ σM1 , ..., an ∈ σMn

If every hσ is surjective, h is called an isomorphism

An isomorphism h ∶M→M is called an automorphism
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Many-sorted logic

Categorical equivalence - a simple example

Let Σ1 = {P} and Σ2 = {Q} be signatures, with P and Q unary
predicate symbols.
Let T1 and T2 be a Σ1- and a Σ2-theory, respectively.

T1 = {∃!x(x = x) ∧ ∀xPx}
T2 = {∃!x(x = x) ∧ ∀x¬Qx}

Every model M of T1 looks like this:

1. ∣M∣ = {a}, for some object a

2. PM = {a}
The models of T2 also have singleton domains, but QM = ∅

32 / 41



Many-sorted logic

To show that T1 and T2 are categorically equivalent, we have to
look at the categories Mod(Ti)
The models of T1 will be the objects in the category Mod(T1).

What about the arrows in Mod(T1), i.e. the elementary
embeddings between the models of T1?
For any two models M and M′ of T1, there exists a unique
function f ∶ ∣M∣→ ∣M′∣
f is evidently an isomorphism, and hence an elementary
embedding.

⇒ We have identified all the arrows in Mod(T1)
All the same goes for Mod(T2)
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Many-sorted logic

We now want to show that there exists an equivalence of
categories between Mod(T1) and Mod(T2). We will show that

F ∶Mod(T1)→Mod(T2)
M↦M[Q]
f ↦ f̃

is such an equivalence.

Here, M[Q] is the model of T2 with ∣M[Q]∣ = ∣M∣. And f̃ is the
unique arrow f̃ ∶M[Q]→M′[Q], if f is the unique arrow
f ∶M→M′
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Many-sorted logic

F is an equivalence of categories:

F is full: Let g be the unique arrow from M[Q] to M′[Q]. g = Ff
for f the unique arrow f ∶M→M′

F is faithful: immediate from the uniqueness of f

F is essentially surjective: T2 is categorical, therefore all of its
models are isomorphic
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Many-sorted logic

Quine’s conjecture is false

Proposition. Let Σ = {σ1, σ2, ...} be a signature with infinitely
many sort symbols. The Σ-theory T = ∅ is not Morita equivalent
to any single-sorted theory.

Intuitive justification: The theory T says that everything is either
σ1 or σ2 or..., but that is not expressible in FOL without an infinite
disjunction
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Many-sorted logic

Proposition. Let Σ = {σ1, σ2, ...} be a signature with infinitely
many sort symbols. The Σ-theory T = ∅ is not Morita equivalent
to any single-sorted theory.

Sketch of proof : Barrett and Halvorson’s proof is a proof by
contradiction. Assume that there is some single-sorted theory T ′

in signature Σ′ that is Morita equivalent to T . Call their common
Morita extension T+. Remember that every model M of T can be
expanded into a model M+ of T+ such that M+∣Σ′ is a model of
T ′. It can be shown that there exists an equivalence of categories
F ∶Mod(T )→Mod(T ′) that maps every model M of T to the
corresponding model M+∣Σ′ of T ′.
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Many-sorted logic

Sketch of proof (cont.): Barrett and Halvorson now consider a
specific model M of T . It has two important properties: (1) σMi
is finite for every sort symbol σi ∈ Σ, and (2) M possesses
infinitely many automorphisms.

They now consider what the corresponding M+∣Σ′ must look like.
M+∣Σ′ is a Σ′-structure, and Σ′ only contains a single sort symbol,
call it α. Since T and T ′ are by assumption Morita equivalent,
αM

+
∣Σ′ must in some way be constructed from the finite domains

of the sort symbols in Σ via the product-, coproduct-, subsort-,
and quotient-operations. But this means that αM

+
∣Σ′ is itself

finite, since these operations all produce finite sets when applied to
finite sets.
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Many-sorted logic

Sketch of proof (cont.): Hence, M+∣Σ′ possesses at most finitely
many automorphisms. But then the functor F , which maps M to
M+∣Σ′ cannot be a faithful functor, since it maps the infinitely
many automorphisms of M onto the finitely many automorphisms
of M+∣Σ′ . Contradiction.
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Many-sorted logic

A weakened version of Quine’s conjecture holds true:

Quine’s conjecture (weakened)

If Σ contains only finitely many sort symbols, then every Σ-theory
is Morita equivalent to some single-sorted theory

The proof is too long to go over the details. But I will sketch how,
given a finitely-sorted theory, one finds a Morita equivalent
single-sorted theory.
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Many-sorted logic

Say we are given a theory T in a signature Σ with finitely many
sort symbols σ1, ...σn. In the single-sorted theory T ′ we want to
find, we will represent these by unary predicate symbols
Qσ1 , ...Qσn .

To mimic the semantics of the sort symbols, we add the following
axioms to T ′:

▸ ∃σxQσi x for every σi in Σ

▸ ∀σx(Qσ1x ∨ ... ∨Qσnx)
▸ ∀σx(Qσi x → (¬Qσ1x ∧ ... ∧ ¬Qσi−1x ∧ ¬Qσi+1x ∧ ... ∧ ¬Qσnx))

One can then find a translation of the sentences of T into the
single-sorted language. For details see the paper.
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